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Two-step-cascade spectra of the 171Yb(n, γγ)172Yb reaction have been measured

using thermal neutrons. They are compared to calculations based on experimen-

tal values of the level density and radiative strength function obtained from the

173Yb(3He,αγ)172Yb reaction. The multipolarity of a 6.5(15) µ2
N resonance at

3.3(1) MeV in the strength function is determined to be M1 by this comparison.

PACS numbers: 25.40.Lw, 25.20.Lj, 24.30.Gd, 27.70.+q

Excited nuclei decay often by a cascade of γ rays. While the decay between discrete states

is determined by the details of the nuclear wavefunctions, unresolved transitions are best

described by statistical concepts like a continuous radiative strength function (RSF) and

level density. The RSF (reviewed in [1]) provides the mean value of the decay probability

for a given γ-ray energy Eγ. For hard γ rays, (∼ 7–20 MeV), the RSF is governed by the

giant electric dipole resonance whose parameters are determined from photoabsorption [2].

The soft tail of the RSF has been investigated by a variety of methods, most notably by

primary γ rays [3]. Recently, systematic studies of the soft RSF have been performed at
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the Oslo Cyclotron Laboratory using a method based on sequential extraction. With this

method it is possible to obtain both the level density and RSF by a deconvolution of a set

of primary γ spectra from a range of excitation energies [4]. Total RSFs (summed over

all multipolarities) of rare earth nuclei can be extracted for Bn > Eγ > 1 MeV [5]. Their

common, most striking feature is a resonance at Eγ ∼ 3 MeV which is believed to be of

dipole multipolarity but whose electromagnetic character is unknown. It has been shown

for all investigated rare earth nuclei that the total RSF is most readily decomposed into a

sum of the Kadmenskĭı-Markushev-Furman (KMF) E1 model [6], a spin-flip M1 model [7],

and the aforementioned soft dipole resonance [5]. The knowledge of the character of this

resonance is essential for its theoretical interpretation. Experimentally, it can be determined

from an auxiliary two-step-cascade (TSC) measurement [8].

The TSC method is based on the observation of decays from an initial state i to a final

state f via one, and only one, intermediate level m [9–11]. A convenient initial state is

that formed in thermal or average resonance capture (ARC); the final state can be any

low-lying discrete state. TSC spectra are determined by the branching ratios of the initial

and intermediate states (expressed as ratios of partial to total widths Γ) and by the level

density ρ of intermediate states with spin and parity Jπ
m

Iif(E1, E2) =
∑

XL,XL′,Jπ
m

ΓXL
im (E1)

Γi
ρ(Em, Jπ

m)
ΓXL′

mf (E2)

Γm

+
∑

XL,XL′,Jπ
m′

ΓXL
im′ (E2)

Γi

ρ(Em′ , Jπ
m′)

ΓXL′
m′f (E1)

Γm′
. (1)

The sums in Eq. (1) are restricted to give valid combinations of the level spins and parities

and the transition multipolarities XL. They arise since one determines neither the ordering

of the two γ rays, nor the multipolarities of the transitions nor the spins and parities of the

intermediate levels, hence one has to include all possibilities. The two transition energies

are correlated by E1 + E2 = Ei − Ef , thus, TSC spectra can be expressed as spectra of

one transition energy Eγ only. TSC spectra are symmetric around Esym
γ = (Ei − Ef )/2;

integration over Eγ yields twice the total TSC intensity Iif (if both γ rays are counted in

the spectrum). The knowledge of the parities πi
1 and πf ensures that Iif depends roughly

speaking on the product of two RSFs around Esym
γ [8] (i.e. f 2

E1 + f 2
M1 for πi = πf and

1 One assumes that only neutron s capture occurs.
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2 fE1 fM1 for πi �= πf , the latter case being more sensitive to the character of the soft

resonance). Iif depends also on the level density. This usually prevents one to draw firm

conclusions from TSC experiments alone [11]. A combined analysis of Oslo-type and TSC

experiments, however, will enable one to establish the sum and product, respectively, of all

contributions to fM1 and fE1 at energies of the soft resonance, thus determining its character.

For this goal, the partial widths of Eq. (1) are expressed via

ΓXL
x→y(Eγ) = fXL(Eγ)E

2L+1
γ Dx (2)

in terms of RSFs and level spacings Dx. Eq. (2) actually gives only the average value of the

Porter-Thomas distributed partial widths [12]. The total width Γ is the sum of all partial

widths. Again, the sum is only the sum of mean values, however, the distribution of total

widths with many components is almost δ-like [12]. The level density for a given spin and

parity is calculated from the total level density by [13]

ρ(Ex, J
π
x ) = ρ(Ex)

1

2

2Jx + 1

2 σ2
exp

[
−(Jx + 1/2)2

2 σ2

]
, (3)

where σ is the spin cut-off parameter, and we assume equal numbers of positive and neg-

ative parity levels. This assumption and Eq. (3) have been verified from the discrete level

schemes of rare earth nuclei. Thus, all quantities for calculating TSC spectra are based on

experimental data.

The combined analysis is applied to the nucleus 172Yb which has been investigated by the

173Yb(3He,αγ)172Yb reaction in Oslo and by the 171Yb(n, γγ)172Yb reaction at the Lujan

Center of the Los Alamos Neutron Science Center (LANSCE). The Oslo data have been

reported in [4, 5]. Thus, only a short summary is given. The experiment was performed

using a 45-MeV 3He beam on a metallic, enriched, self-supporting target. Ejectiles were

detected and their energies were determined using particle telescopes at 45◦. In coincidence

with α particles, γ rays were detected in an array of NaI detectors. From the reaction

kinematics, α energy is converted into Ex, and γ cascade spectra are constructed for a range

of Ex bins. The γ spectra are unfolded [14] and the primary γ spectra are extracted using a

subtraction method [15]. The spectra are deconvoluted into a level density and a total RSF

by applying the Brink-Axel hypothesis [16]. The level density is normalized by comparison

to discrete levels at low Ex and to the average neutron resonance spacing at Bn [4]. The RSF

is normalized using the average total width of neutron resonances, and is decomposed into
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FIG. 1: Left panel: total level density (filled circles), constant-temperature extrapolation (solid

line), level density at Bn derived from the average neutron resonance spacing (filled square) [7],

and level density from counting of discrete levels (jagged line) [18]. Right panel: total RSF (filled

circles), fit to the data, and decomposition into RSFs of different multipolarities (solid lines). The

inclusion of the soft resonance in the fit decreases the χ2
red from ∼ 7.4 to ∼ 1.3. Since this value

is close to unity, inclusion of additional non-statistical structures cannot significantly improve the

fit.

the KMF E1 model, a spin-flip M1 model, and a soft dipole resonance [5]. Here, we have

improved on the normalization of the level density and the RSF and included an isoscalar

Lorentzian E2 model [17] giving

ftot = K(fE1 + fM1) + E2
γ fE2 + fsoft, (4)

where K is a scaling factor of the order of one. Since quadrupole transitions populate levels

within a broader spin interval than dipole transitions, Eq. (4) is of an approximative nature.

Given the weakness of quadrupole transitions and the level of experimental uncertainties,

however, this approximation is believed to be sufficient. The improved data, the fit to

the total RSF, and its decomposition into different multipolarities are given in Fig. 1. The

parameters for the E1 RSF are taken from [5], those for the M1 and E2 RSFs from [7], where
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we use the fE1/fM1 systematics at ∼ 7 MeV giving values in agreement with ARC work [19].

The fit parameters are: the constant temperature of the KMF model T = 0.34(3) MeV,

the normalization coefficient K = 1.7(1), and the three parameters of the soft resonance

E = 3.3(1) MeV, Γ = 1.2(3) MeV, and σ = 0.49(5) mb2.

For the 171Yb(n, γγ)172Yb experiment, we used ∼ 1 g of enriched, dry Yb2O3 powder

encapsulated in a glass ampoule, mounted in an evacuated beam tube and irradiated by

collimated neutrons with a time-averaged flux of ∼ 4 × 104 neutrons/cm2s at ∼ 20 m from

the thermal moderator. γ rays were detected by two 80% and one shielded and segmented

∼ 200% clover Ge(HP) detector, placed at ∼ 12 cm from the target in a geometry to

minimize angular correlation effects and contributions from higher multiplicity cascades.

Single and coincident γ rays were recorded simultaneously, including n-time-of-flight and

γ-γ coincidence time. The experiment ran for ∼ 150 h yielding ∼ 107 coincidences. The

relative detector efficiencies from 1–9 MeV were determined by two separate runs of ∼ 12 h

each, before and after the 171Yb(n, γγ)172Yb experiment, using the 35Cl(n, γ)36Cl reaction

and its known γ intensities [20]. Also, a standard calibrated 60Co source has been measured

to adjust the relative curves to an absolute scale. The energy-summed coincidence spectrum

(Fig. 2, upper panel) shows distinct peaks corresponding to TSCs between Bn and several

low-lying states. The two strongest peaks have ∼ 4000 counts each. TSC spectra (lower

panels) were obtained by gating on three peaks, using the background subtraction method of

[21] thereby avoiding spurious structures. Relative intensities of primary versus secondary γ

rays were determined from the singles spectra and are in agreement with Ref. [19]. Absolute

intensities were determined by using new data on absolute secondary γ-ray intensities [22]

and scaling primary intensities to these values using the relative intensities of [19]. These

absolute intensities are ∼ 20% higher than in [19]. TSC intensities are normalized to (i)

absolute primary intensities and secondary branching ratios of individual TSCs and (ii) by

effectively estimating the number of neutron captures during the experiment from singles

spectra, absolute (secondary) intensities, and absolute detector efficiencies. Both methods

give equal results to within 10%.

TSC spectra are compared to calculations according to Eq. (1) assuming either electric

2 The cited parameters are mean values obtained from the 173Yb(3He,αγ)172Yb and 172Yb(3He,3He′γ)172Yb
reaction data.
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FIG. 2: Upper panel: energy-summed coincidence spectrum from the 171Yb(n, γγ)172Yb reaction.

The peaks are labeled by energy of the final state. Those denoted by 71Ge and 29Si are due to

n-capture in the detector and in the glass ampoule, respectively. SE and DE stands for single and

double escape peaks, respectively. TSC spectra to the 2+
1 state at 79 keV (middle panel) and the

0+
1 state at 0 keV (lower panel). The slight asymmetry is due to the energy-dependent resolution

of the detectors.
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FIG. 3: Left: experimental values (hatched areas) for TSC intensities to final states 1−1 at 1155 keV

(upper panel), 2+
1 (middle panel), and 0+

1 (lower panel) compared to calculations as function of

R. Solid and dashed lines correspond to the M1 and E1 hypotheses for the soft resonance. Right:

combined χ2
red for all three TSC intensities as function of R for the M1 and E1 hypotheses (upper

panel). Experimental (filled circles) and calculated TSC spectra to the 2+
1 state (middle panel) and

0+
1 state (lower panel) for the M1 hypothesis at R = 0.5 and the E1 hypothesis at R = 1. On the

edges of the experimental spectra, the influence of Porter-Thomas fluctuations becomes visible.
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or magnetic character for the soft resonance [8]. Due to the large Porter-Thomas fluctua-

tions of TSC intensities, TSC spectra are compressed to 300 keV energy bins and only a

2.5 MeV broad energy interval in the middle of the spectra is taken into account [11] for

the comparison. Corrections due to non-isotropic angular correlations of TSCs have been

applied. They can be up to ∼ 20%, depending on the initial and final spins and parities

involved in the respective TSCs. The contributions to the thermal radiative neutron cap-

ture cross section σth
n,γ from the two possible spins (0− and 1−) involved in neutron s-capture

on 171Yb are uncertain. The compilation [23] assumes 0− for the sub-threshold resonances

which contribute 88% to σth
n,γ. Another 4% comes from 0− resonances above threshold, giv-

ing in total a 92% contribution of 0− states. On the other hand, there is no strong evidence

that all contributing sub-threshold resonances have 0−. Examination of hard primary γ-

rays [19, 24] reveals many strong transitions populating 2+ levels, indicating that a sizeable

portion of σth
n,γ stems from 1− resonances. Therefore, we performed calculations for a set of

ratios R = σth
n,γ(0

−)/σth
n,γ. These calculations show, however, that only the TSC intensity

to the 0+
1 state has a strong dependence on this ratio. Total experimental and calculated

TSC intensities are shown in the left panels of Fig. 3. The calculations assuming E1 for

the soft resonance do not reproduce the experimental intensities for any value of R. Good

agreement is achieved assuming M1, with the additional condition of R ∼ 0.5 for the 0+
1

final state. However, it has to be emphasized that the conclusion of an M1 multipolarity for

the soft resonance can be established from the TSC intensities to the 2+
1 state and the 1−1

state independently, irrespective of the value of R. Possible systematic uncertainties in the

absolute normalization cannot change this conclusion, since in the case of the final states

0+
1 and 2+

1 , one would need a decrease while at the same time, for the 1−1 final state one

would need an increase in the experimental TSC intensities in order to accommodate the E1

hypothesis. The combined χ2
red for all three TSC intensities as function of R is also given.

The M1 hypothesis yields the global minimum for R = 0.5± 0.2 with χ2
red < 1 whereas the

minimal χ2
red for the E1 hypothesis is ∼ 6 for R = 1. Finally, we show the TSC spectra

to two final states compared to calculations using the M1 hypothesis at R = 0.5 and the

E1 hypothesis at R = 1. No further conclusions have been drawn from this comparison,

however.
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The integrated strength of the soft resonance is expressed as

B↑(M1) =
9�c

32π2

(
σΓ

E

)
soft

(5)

giving a value of 6.5(15) µ2
N which is entirely determined from the Oslo-type experiment after

M1 multipolarity has been established. This is in agreement with the sum-rule approach for

soft, orbital M1 strength [25] but is more than twice the strength from nuclear resonance

fluorescence (NRF) [26]. However, in [11, 27] several limitations in determining B↑(M1)

using NRF are discussed, all resulting in possible underestimation. Concerns are that (i)

too few 1+ levels are observed in NRF experiments compared to level density estimates (eight

candidates for 1+ levels have been observed in the NRF experiment within the 2–4 MeV

energy interval whereas ∼ 120 such levels are expected from experimental level densities),

(ii) the assumption in NRF experiments is not fulfilled that the total radiative width is

given by the sum of the partial radiative widths for transitions to the ground state and

the first excited state only, and (iii) the energy-region coverage is insufficient. Hence, in

NRF experiments, weak, unobserved excitations from the ground state, weak, unobserved

decays to excited levels above the ground-state rotational band, and excitations outside the

investigated energy range might all contribute to an increased, summed B↑(M1) value in

better agreement with the present value [27]. Also in [11] B↑(M1) ∼ 7µ2
N is required in

order to reproduce TSC spectra in 163Dy.

In order to investigate the above mentioned concerns and to better compare the present

result with the NRF observations, we have performed a simulation of the 172Yb(γ, γ′) ex-

periment on the basis of the statistical model. The main assumption of this approach is

that the mean value of partial radiative widths does not depend on concrete initial and final

nuclear levels, but that it is determined by global nuclear characteristics such as the RSF

and the level density. Each individual radiative width is, according to the statistical model,

randomly distributed around this mean value and the probability for having any specific

value is given by the Porter-Thomas distribution. The main observable in NRF experiments

is the energy-integrated cross-section I0+1 of resonantly scattered γ rays populating an in-

termediate state at excitation energy E and then decaying down to either the ground state

or the first excited state. This partial, energy-integrated, photo-absorption cross-section is

given by

I0+1 =
3π2

�
2c2

E2

Γ0 (Γ0 + Γ1)

Γ
. (6)

UCRL-PROC-201281



10

Here, Γ0 and Γ1 are the partial decay widths to the ground state and first excited state,

respectively, and Γ is the total radiative width of the intermediate state with energy E.

Similar partial cross-sections to higher-lying final states f can be calculated by replacing

Γ0 + Γ1 with the appropriate Γf .

The information from the 172Yb(γ, γ′) experiment consists of the energies E and the

partial, energy-integrated, photon-absorption cross-sections I0+1 of eight candidates for 1+

states and of thirteen 1− states [26]. Under the assumption that Γ = Γ0 + Γ1 and that all

candidates for 1+ states are, in fact, 1+ states, the authors of [26] have deduced a summed

B↑(M1) value for all eight candidate states of 2.4(10)µ2
N .

Since, within the statistical model, the mean values of radiative widths can be expressed

in terms of level densities and RSFs according to Eq. (2), we can use experimental values

of these quantities from Oslo-type experiments to simulate a random set of NRF observ-

able using Eq. (6). In order to properly take into account the detection threshold in NRF

experiments, partial radiative widths for all possible γ transitions connecting intermedi-

ate 1+ states with final states by dipole or quadrupole radiation have been simulated as

random, Porter-Thomas distributed values with mean values determined by Eq. (2). Each

set of simulated radiative widths has been used to calculate the partial, energy-integrated,

photon-absorption cross-sections I0+1 for 1+ states. The energy dependence of the detection

threshold has been introduced according to [28]. Here, we would like to point out that the

estimated energy dependence of the detection threshold in NRF experiments is only valid for

the cases where the scattered γ ray has roughly the same energy as the incoming γ ray. Due

to the ∼ 1/Eγ shape of the bremsstrahlung spectrum typically used in NRF investigations

and the presence of non-resonantly scattered γ rays the experimental γ background for low-

energy decays to excited states above the ground-state rotational band can be substantially

higher. It is thus difficult to adjust the absolute scale of the detection threshold for different

experiments due to a lack of information. Therefore, we have scaled the detection threshold

in the simulation such that we observe, in average, eight levels above threshold in the energy

range of 2–4 MeV. We have performed a total of 100 simulations from which summed mean

values of partial, energy-integrated, photon-absorption cross-sections I0+1 are obtained.

Without taking into account the detection threshold, the simulation yields a mean value

of integrated cross section for the sum of all 1+ excitations in the energy region 2–4 MeV

of ∼ 0.8 MeV mb. If one takes into account only the eight levels above threshold, this
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value reduces to 0.30(9) MeV mb. This value can be translated into B↑(M1) = 2.6(8) µ2
N

which is in good agreement with the reported value of B↑(M1) = 2.4(10) µ2
N from NRF

experiments. The remaining M1 strength is hidden in the background according to our

simulation. Calculations also show that the assumption made in NRF experiments Γ0+Γ1 =

Γ is only fulfilled for states with large values of I0+1 (i.e. transitions above threshold). This is

in good agreement with [31] where the lifetimes of the most strongly populated 1+ states in

162,164Dy have been measured independently by inelastic neutron scattering. It turns out that

there exists a strong positive correlation between I0+1 and (Γ0+Γ1)/Γ, indicating that decay

branches to higher-lying states become more important the weaker the state is populated

to begin with. This result of the simulation could probably be tested experimentally at the

quasi monoenergetic, 100% polarized High Intensity Gamma Source (HIGS) at the Duke

University Free Electron Laser Laboratory and Triangle Universities Nuclear Laboratory.

In conclusion, the soft resonance found in the RSF of 172Yb in Oslo-type experiments

has been determined to be of M1 multipolarity by an auxiliary TSC measurement. The

strength of the M1 resonance is B↑(M1) = 6.5(15) µ2
N which is entirely determined by the

former experiment. This value agrees with a sum-rule approach for orbital strength, but

is more than twice the value reported by NRF experiments. However, this difference can

been explained tentatively on the basis of the statistical model. Our simulation hints that a

possible source for underestimation of B↑(M1) strength in NRF experiments can arise from

weakly excited states and weak decays to excited states above the ground-state rotational

band. Those weak transitions might be missed in NRF experiments due to the presence of

an experimental detection thresholds. Additional experimental data to resolve this question

are highly desirable. Assuming M1 multipolarity for similar soft resonances in other rare

earth nuclei gives consistent strengths of ∼ 6 µ2
N for various even and odd Dy, Er, and

Yb nuclei and quenched strengths of ∼ 3 µ2
N for the more spherical Sm nuclei [32]. The

centroids of the resonances increase weakly with mass number.
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